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Abstract

Iterated transportation microsimulations adjust their travelers' route

plans by iterating between the microsimulation and the route planner

and adjusting the route choice of individuals based on the preceeding

microsimulations. Empirically, this process give good results; but it is

usually unclear when to stop the iterative process, when one wants to

model real-world tra�c. This paper investigates several criteria to judge

relaxation of the iterative process. The paper concentrates on criteria that

are related to the decision-making process of the drivers.

1 Introduction

An individual who wants to go from location A to location B is faced with the
questions if to go at all (maybe it is too far), when to go, and which mode and
route to select. The problem gets more complicated because of other people:
Congestion will make certain (or all) routes slow and thus inuence the decision.

From the point of view of transportation planning, the question is how to
assign transportation demand to the transportation infrastructure. Since an-
swering all the above questions simultaneously is a hard problem, it often gets re-
duced to the route choice part alone. Current transportation simulation projects
approach this problem by day-to-day iterations: Each individual selects a route,
the microsimulation is run and congestion is recorded, some individuals select
a new route which would have been better, the microsimulation is run again,
etc. [1, 2, 3, 4, 5, 6].

It is emperically clear that this has a bene�cial e�ect on the structure of
the tra�c patterns [4, 6]. It is less clear how to describe exactly where such
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iterations lead: Do they converge? If so, do they converge towards a �xpoint,
towards a periodic attractor, or towards something else? Are there possibly
several basins of attraction? And also: Does this have anything to do with
what the real system does?

This paper will start with a short review of traditional assignment (Sec. 2),
leading to the issue of stopping criteria in iterative assignment, both for tradi-
tional methods based on link performance functions and for simulation-based
methods (Sec. 3). Secs. 4{7 describe the data that we used: the geographical
context, the microsimulation that was used, the replanner that was used, and a
description of which particular simulation output was used. In general, all inves-
tigations compare three situations: (i) uncongested; (ii) congested \unrelaxed",
i.e. at the beginning of the iteration process; (iii) congested \relaxed", i.e. at a
later stage during the iteration process. Sec. 8 describes velocity distributions
for cars and on links for these three situations, and Secs. 9{12 describe various
results concerning the structure of fastest paths and their alternatives. This is
followed by a discussion of the results (Sec. 13), a short section on computational
considerations (Sec. 14), and a summary.

2 Tra�c assignment

A traditional answer has been static assignment, that is to assume a steady
state (i.e. independent of the time-of-day) demand and to allocate the resulting
tra�c \streams" in some \optimal" way. Optimal here means that some cost,
say time, gets minimized, either for each individual user (User Equilibrium, Nash
Equilibrium, Wardropian Equilibrium), or for the performance of the system as
a whole (System Optimum). To include the e�ects of congestion, one needs
a mechanism which reects the higher cost of congested links. Traditionally,
this is done using \link performance functions", i.e. functions which return the
speed on a link as a function of the number of vehicles that use it, V (�i), where
i is the number of the link and � is the density of vehicles on it. Given these
ingredients, there are many ways to solve this problem [7, 8].

One of the problems with this approach is that its handling of strong con-
gestion is dynamically inconsistent. If in a real-world network more vehicles
attempt to use a link (say a bridge) than the bridge can handle (i.e. demand
is higher than capacity/supply), the system reacts with queue build-up at the
entry to the bridge. And now, the travel-time one needs to get across the bridge
depends on when one gets there: If one gets there just when the queue build-up
starts, the waiting time is still short; if one gets there an hour later, one may
have to wait a long time.

Of course, the problem with traditional assignment is that the cost function
is not history dependent. Making it history dependent would be possible, but it
would make the optimization problem mathematically much harder. And then,
the deeper problem is that the approach in general makes it complicated to deal
with added complexity, such as queuing in turn pockets, interactions between
slower and faster vehicles, bus schedules, individually di�erent preferences, non-

2



rational behavior, etc.
This explains why using micro-simulations, which only recently became pos-

sible on a large enough scale due to advances in hardware and algorithms, are an
attractive alternative: A microsimulation can, at least conceptually, add all the
complicated elements of reality and generate a dynamically consistent behavior.
However, since none of the mathematical methods works any more, one resorts
to iteration as described in the introduction, i.e.: use the information generated
by the microsimulation to adjust some of the route plans, run the simulation
again, adjust some more of the route plans, etc. Note that one of the earliest
and simplest steady-state assignment algorithms, the Frank-Wolfe-algorithm, is
very similar in spirit, although geared towards steady-state situations.

3 Stopping criteria for iterative assignment

When doing iterations, one needs a stopping criterion. In deterministic steady-
state assignment, this is easy: Just monitor the system, and stop when changes
(according to a pre-de�ned measure) are smaller than some pre-de�ned �. That
requires that one can show that the iteration method will indeed lead to con-
vergence, which can be shown for deterministic steady-state assignment [7, 8].

The microsimulations that we are using are neither steady-state nor deter-
ministic, and it is unclear if any of the above holds. To get some intuition, one
can for example plot the sum of all individual travel times vs the iteration num-
ber (Fig. 1). One sees that there is some roughly exponential convergence in
that quantity; yet, the plot says nothing about if the underlying tra�c patterns
remain the same from day to day or if there are strong uctuations which just
average out on the macroscopic level.

For comparison, Fig. 2 shows an often-used stopping criterion for traditional
assignment applied to our data series (described later). The function on the
y-axis is de�ned as [9, page 119]

F =

qP
a(x

n+1
a � xna )

2

P
a x

n
a

(1)

(where xna denotes the ow on link a at iteration n; link ows here are always
positive); this measures changes from one iteration to the next on an individual
link basis. The iterations are supposed to stop when this quantity decreases
below a certain level. Yet, note that, in Fig. 2, its value during the �rst iterations
is not much higher than what is reached near the end; and the plot indicates
that it will most probably never converge to zero (indicating that there are
indeed considerable variations between iterations, which just cancel out in the
aggregate variable used above). Both arguments together make this criterion
useless.

Thus, at best one could demand that some function converges in the av-
erage. In the most strict de�nition this would mean to run, say, the planset
of iteration n � 1 for a couple of times with di�erent random seeds, then the

3



1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

4.5e+08

0 20 40 60 80 100 120

S
um

 o
f a

ll 
tr

av
el

 ti
m

es

Iteration number

1e+07

1e+08

1e+09

0 20 40 60 80 100 120

S
um

 o
f a

ll 
tr

av
el

 ti
m

es
 -

 1
.1

e8

Iteration number

Figure 1: Top: Sum of all individual trip times, S, as a function of the iteration
number, and possible exponential �t to the tail of the data, S = S1 + (S0 �
S1) �exp(�n=�), with parameters S1 = 1:1 �108, S0 = 4:5 �108, � = 47. n is the
iteration number. The particular value of S1 is also justi�ed by results from
other iteration series which indeed seemd to \converge" at that value. S0 and
� were �tted afterwards, giving more emphasis to the tail of the data. Clearly,
at the beginning of the iteration process, heavy congestion makes the sum of all
trip times large. Better trip distribution across links relieves congestion. Note
that the curve is not yet at after 110 iterations, indicating that the system
is not yet completely \relaxed". Bottom: Same data, but y-values reduced by
1:1 � 108 and y-axis logarithmic. { Data from M. Rickert.

planset of iteration n for a couple of times, then average the link ows for both
iterations, and then compare them according to the above criterion.

Yet, this seems like a waste of computational resources. This is especially
true since, as pointed out in the introduction, there is no reason to believe that
real world transportation systems go to this state. For the remainder of this
paper, we want to look for more \structural" quantities, i.e. quantities that:

� reect more directly how people behave (travel times are a very indirect
result of their behavior)

4



0

0.005

0.01

0.015

0.02

0.025

0.03

0 20 40 60 80 100 120

lin
k 

flo
w

 c
ha

ng
e 

m
ea

su
re

iteration number

Iteration stopping criterion p. 119 Sheffi, time bin 17100

no data available for iterations 52-54 and 58-60

"transims100.01.out"

Figure 2: The conventional stopping criterion (equation 1) as a function of the
iteration number. Data points are unavailable for iterations 52{54 and 58{60.
Data from M. Rickert.

� are robust with respect to calibration (travel times depend on, e.g., speed
limits)

� could, at least in principle, be obtained in the real world.

As a guiding theme, we will use the following idea: When tra�c �lls up the
system when approaching the rush hour, vehicles will �rst use the fast links
such as freeways, in consequence slowing them down. Eventually, they will not
be any faster than major arterials, so that people start using major arterials.
Once major arterials are su�ciently slowed down, minor arterials will start �lling
up, etc. Thus, a \relaxed" system should somehow reect a di�erent balance
between fast and slow than an unrelaxed or an empty system.

4 Context

The context of this study is the TRANSIMS Dallas/Fort Worth case study, as
described in [10]. Most of the information relevant for the present paper can also
be found in Ref. [11]. We focus on a \study area", which is an approximately
5 miles by 5 miles area around the busy intersection of the LBJ freeway and the
Dallas North Tollway. This is the only area for which all streets, including local
streets, are in our data base. With increasing distance from the study area, less
and less information is provided; for example, Fort Worth is only represented by
its freeways. The whole network consists of 14751 (mostly bi-directional) links
and 9864 nodes.
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With respect to trips, the initial travel demand input to the case study
are production-attraction (PA) matrices provided by the Dallas/Fort Worth
regional planning authority. From these matrices, individual trips (i.e. lists of:
starting time, starting location, and ending location) between 5am and 10am
are generated [10, 12]. A trip distribution as function of time-of-day is used
here. For the so-called initial planset, these trips are routed using fastest path
based on free speeds. All routes which do not go through the study area are
discarded. From then on, all iterations are run on that set of routes; i.e., the
re-planner can route trips around the study area, but these are not completely
discarded.

5 The micro-simulation

The micro-simulation module itself has also been described in Ref. [13]. It is
based on the cellular automata (CA) technique, that is, the road is divided into
cells each 7.5 meters long, each cell is either empty or occupied by exactly one
vehicle, and as a result vehicles move by hopping between cells [14, 15]. The
simulation includes the correct number of lanes plus lane changing because of
slower vehicles ahead, speed limits, and plan following (i.e. each vehicle follows
a precise, link by link, route plan, pre-computed by the route planner). Inter-
sections are fairly abstracted; for example, vehicles can move from any incoming
lane into any outgoing lane. Since that means the simulation does not di�erenti-
ate between directional links, \average" light cycles across all lanes are used. As
implied above, the microsimulation used for this study runs on \pre-computed"
route plans; i.e. at the beginning of each microsimulation run, for each vehi-
cle the starting time, starting location, and the precise, link-by-link route plan
are already known and cannot be changed during the simulation. For further
information, see [13, 6].

6 The replanner

As explained above, we use the information from the previous microsimulation
run to adjust the planset. This is done by selecting a certain fraction, X , of
route plans randomly and replacing them with (time-dependent) fastest paths
based the link travel times computed by the previous microsimulation. For the
results in this paper, the re-planning fraction was one percent, i.e. per iteration,
one percent of the travelers had the option to change their route plans. More
details will be published elsewhere [16, 6]; the general approach is similar to the
one described in [11].

Note that this approach is neither \rational" nor behaviorally well justi�ed.

� Rational behavior would imply that agents optimize their behavior so the
the \expected" (equivalent, in our case, to \average") travel time would be
minimized. Our algorithm, when selected for re-routing, only minimizes
with respect to the last iteration; for a stochastic microsimulation, this
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most probably will not lead to an optimized \average" behavior for the
individual.

Note that when using a deterministic microsimulation, some of these prob-
lems go away and mathematical statements concerning convergence are
possible [17, 18, 19]. Also note that forcing the algorithm to generate av-
eraged behavior does not necessarily lead to good results; for an example
in the context of departure time choice see Ref. [20].1 This fact has at
least intuitively been known for a long time [21, 22, 23].

� From a behavioral perspective, people in reality do not have access to as
much information (travel time on all links) as they have in the simulations.
It is actually possible to make the iterations more realistic with respect to
the second aspect [23]; also, the Intelligent Transportation Systems ITS
initiative may provide more information in the future.

7 Methodology

We begin with the assumption that our simulated network is far from relaxation
as the planner{microsimulation iterative process begins. At the initial run (\0th
iteration") of the microsimulation, when each motorist has chosen routes un-
der the false assumption that she has the road network to herself, the freeways
quickly grid-lock due to over-use, and in many respects the tra�c patterns not
resemble real tra�c. After many iterations of the planner and microsimulation
(100 iterations at 1% re-planning in the examples discussed here, \run5" in
Rickert's terminology [16, 6]), the network has relaxed to the point where link
ows and turn counts resemble those of the real-world network. We therefore
assume that the zero iteration network is far from relaxation, and the 100th
iteration is more relaxed (although not as far as it could). We seek an equili-
bration measure which distinguishes clearly among three network regimes: an
uncongested network, an \unrelaxed" congested network, and a \relaxed" con-
gested network. Unless otherwise noted, we use (i) \free" speeds on the links
for the uncongested case, (ii) speeds averaged between 8am and 8:15am from
the initial run (0th iteration) for the \unrelaxed congested" case, and (iii) the
mean of 100th through 110th iteration link speeds between 8am and 8:15am to
represent \relaxed congested" network link speeds.

8 Velocity distributions

First, we look at speed statistics. Fig. 3 �rst shows how the average link speed,
i.e. V =

PM

i=1 < v >i with < v > the average speed on a link andM the number

1The reason for this instability is, loosely speaking, the following: Too many people choose
more or less the same solution; the system reacts by generating a very broad distribution
of performances for each individual for this solution, i.e. the performance becomes highly
unpredictable; but the expectation value over this distribution still favors this solution so that
everybody sticks with it.
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Figure 3: Top: Mean of link speeds as function of time-of-day for the 0th
(\unrelaxed") and the 110th (\relaxed") iteration. Middle: Distribution of
vehicle speeds during a congested period. Bottom: Distribution of link speeds
during a congested period.

of links, develops as a function of day. The curve for the relaxed situation
(110th iteration) shows the expected form: First decrease of average speed due
to the rush period; later increase of average speed when the rush period is over.
In contrast, for the non-relaxed situation, the average link speed just keeps
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decreasing during most of the simulation period.
To test the hypothesis that congestion slows down the fast streets, we also

look at speed distributions, both by vehicle and by link (Fig. 3 middle and
bottom). Clearly, in the relaxed situation, speeds are much more concentrated
around an average value (around 9 mph), whereas in the unrelaxed situation,
the distribution for both statistics is more at and spread out, and has strong
contributions at zero speed, indicating gridlock (see discussion).

9 2nd-fastest vs. fastest path

Next, we want to look at measures which reect the structure of the decision-
making of the individual user. The above argument implies that, in the relaxed
situation, the decision landscape should be \at" near the minimum: Many dif-
ferent route choices should result in similar travel times. This leads us naturally
to consider K-fastest paths between randomly-chosen origin{destination pairs.
First, we consider only the fastest (K = 1) and second-fastest (K = 2) paths
between a large set of randomly-chosen O-D pairs. Technically, we use 955 OD
(origin-destination) pairs in the study area which are between 7 km and 7.01 km
apart. We then calculate the fastest and the second-fastest path based on three
link costs: (i) free ow,2 (ii) link speeds provided by the initial (\0th iteration")
micro-simulation, and (iii) link speeds given by the mean of the 100th to 110th
iteration simulations.

In cases (ii) and (iii), paths start at 8:01am, and as link costs we use link
travel times averaged from 8:00 to 8:15. In general, we compute K-fastest
simple (i.e. loopless) paths using an algorithm described in [24]. Note that
this algorithm does not compute fastest paths in time-dependent networks, i.e.
networks with varying link travel times. In all of the fastest paths considered
here we use link travel times taken from a (15 minutes long) \snapshot" of our
network. We were unable to locate an e�cient (i.e. polynomial-time) algorithm
in the literature which computes K-fastest simple paths in graphs with time-
varying link travel times. Yet, most of our paths reach their destination before
15 minutes are over so that this is only a minor concern for the present study.
For more computational details, see below.

Our intuition is, again, that in a congested network in equilibrium, routes
will be distributed more evenly among paths than in a free-ow network, and
therefore the ratio of fastest to 2nd-fastest path travel times will be nearer to
unity than in the free-ow network. To put it di�erently, the disincentive to
deviate from a fastest path will be weaker in a relaxed congested network than
in an uncongested network. As we see in Figure 4, this is indeed the case.
In other words: Small deviations from the fastest path are most expensive in
the uncongested network. We also notice that the zero-iteration line lies above
the curve representing the relaxed network, indicating that under unrelaxed

2For the present study, we use the free speeds as provided by the Dallas regional planning
authority. These are not necessarily the same as the free speeds generated by the microsimu-
lation. The e�ect of this needs to be tested in future work.
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Figure 4: For 955 O-D pairs at distance 7 km in Dallas, we compute the ratio
(top) or the di�erence (bottom) of fastest path to second-fastest path trip time
and sort these values in increasing order. The \relaxed congested" curve has
one outlier at a ratio of about 0.91 and at an added cost of about 80.

congested conditions small deviations are even less expensive than under relaxed
congested conditions. Thus, this measure seems to be capable of di�erentiating
between uncongested and congested conditions, but not between relaxed and
unrelaxed congested conditions. It thus does not appear to be a promising
means of measuring a network's proximity to equilibrium.

10



0

10000

20000

30000

40000

50000

0 100 200 300 400 500

ag
gr

eg
at

e 
ab

so
lu

te
 e

xt
ra

 tr
av

el
 ti

m
e

k

uncongested
relaxed congested

unrelaxed congested

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 50 100 150 200 250 300 350 400 450 500

av
er

ag
e 

ra
tio

 fa
st

es
t p

at
h 

: k
-f

as
te

st
 p

at
h

k

uncongested
unrelaxed congested

relaxed congested

Figure 5: Aggregated rank-cost pro�les of 955 Dallas O-D pairs at 7 km distance
at 8:01 a.m.. Left: Aggregate extra travel time for the 2nd, 3rd, : : :, K-fastest
path. The three sets of rank-cost pro�les were aggregated by simple addition, i.e.
for each rank we plot the sum of travel time minus fastest path travel time. The
three lines are signi�cantly di�erent from exponentials. Right: Average ratio
between the K-fastest and the fastest path. In both �gures, we see again that the
penalty for deviating from the fastest path is much higher on an uncongested
network than on either the zero iteration network or the relaxed congested
network.

10 K-fastest vs. fastest path

To explore further our intuition that disincentives to deviate should be weaker
in relaxed congested networks, we consider the rank-cost pro�le of K-fastest
paths, i.e. of excess travel time for fastest, 2nd fastest, 3rd fastest paths etc.
The results of this investigation are summarized in Figure 5 which shows the
aggregated rank-cost pro�les of 500 fastest paths between each of a large random
sample of O-D pairs computed using uncongested, unrelaxed congested, and
relaxed congested link travel times. We see that these aggregated rank-cost
pro�les can again distinguish between uncongested and congested networks {
note the large gap between the free-ow curve and the others { but they are
less useful in distinguishing between equilibrated and unequilibrated networks.

11 Average similarity to fastest path as a func-

tion of extra travel time

So far, our measures fail to reveal any systematic di�erence between unrelaxed
congested and relaxed congested conditions. Yet, in a certain sense, this is not
astonishing. The above measures look at additional absolute or relative travel
time only as a function of the number K (from the K-fastest path). This is
a purely computational quantity and has little meaning in the real world. A
second fastest path typically is only a tiny variation of the fastest path, such as
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Figure 6: Similarity to respective fastest path as function of added absolute
travel time for a particular OD-pair. The nearly horizontal traces come from
\robust" alternatives and small variations around those.

leaving and re-entering a freeway at a ramp [25]. This is not what we mean by
\real alternatives"; real alternatives should be signi�cantly di�erent from the
�rst choice.

In order to access this problem quantitatively, we need a measure of path
similarity. Many measures of path similarity have been proposed. Reasonable
de�nitions exist for \detour" paths [26] and paths with a bounded number of
edges in common [27]. For the present purpose, we use the \common travel time
ratio" � de�ned in [28]:

�j(i) =

Pn

a=1 tad
a
ijPn

a=1 tad
a
ii

(2)

where �j(i) is the common travel time ratio of path i with respect to path j,
daij = 1 if link a is used by path i and path j, daij = 0 otherwise, ta is travel
time on link a, and n is the number of links in the network. This is simply the
fraction of path i's travel time spent on links shared with path j. Note that
�j(i) must lie in the range [0; 1] and need not equal �i(j).

Fig. 6 shows a plot of this similarity measure as a function of additional
travel time for a particular OD-pair and the �rst 500 shortest paths.3 In gen-
eral, one seems to �nd more paths that are very di�erent from the fastest one
with increasing additional travel time; yet, the values are strongly uctuating.
Nevertheless, averaging over all 955 OD-calculations shows an interesting result
(Fig. 7): For a given additional travel time, both uncongested and relaxed con-

3Similar plots have been made for proteins: Similarity to the ground state as a function of
the additional energy [29].

12



0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 20 40 60 80 100

si
m

ila
rit

y 
to

 fa
st

es
t p

at
h

additional travel time [sec]

average similarity to fastest path for given additional travel time

unrelaxed congested
relaxed congested

uncongested

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100

fr
ac

tio
n 

of
 k

sp
 c

al
cu

at
io

ns

additional travel time [sec]

fraction of ksp calculations which reach to this additional travel time

unrelaxed congested
relaxed congested

uncongested

Figure 7: Top: Average similarity to fastest path as function of added absolute
travel time. Averaged over 955 OD pairs. For any of the situations (uncon-
gested, unrelaxed congested, congested), the similarity measures of all K-fastest
path that had additional travel times between 0 and 10 seconds, 10 and 20 sec-
onds, etc., were averaged. Bottom: Fraction of calculations that reached out to
that value of additional travel time.

gested K-fastest paths show a much larger di�erence to the fastest path than
under unrelaxed congested conditions. That is, if one is ready to accept a cer-
tain additional travel time, the alternatives one �nds under unrelaxed congested
conditions are less di�erent from the best alternative. Plotting in the same way
the average similarity as a function of the additional relative travel time (Fig. 8)
shows that there may even be a di�erence between all three regimes, uncongested
being in the middle between unrelaxed congested and relaxed congested.

Underneath the similarity plots are plots which show the fraction of K-fastest
path calculations that have reached particular values of additional absolute and
relative travel times. It would have been better to use the absolute/relative ad-
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Figure 8: Top: Average similarity to fastest path as function of added relative
travel time. Averaged over 955 OD pairs. Bottom: Fraction of calculations that
reached out to that value of additional relative travel time.

ditional travel time as stopping criterion for the computations; with the current
data material, we cannot be sure that the e�ect is a result of the fact that some
calculations have high additional travel times within the �rst 500 fastest paths
and others do not. This, plus the fact that the plots show highly uctuating
results, indicates that more elaborate computations should be made.

Yet, the same information also explains why K-fastest paths alone reveal a
di�erent information: Given a certain amount of additional (absolute or relative)
travel time, there are many more options under congested conditions than under
uncongested conditions. It is that e�ect that dominates many of the measures
and clouds up the di�erences between the two congested regimes.
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Figure 9: We selected 127 O-D pairs at distance 7 km in Dallas such that
the common travel time ratio measure �f (g) < 0:05 where f is the free-ow
fastest path and g is the geometrically shortest path. For each of these pairs
we compute a fastest path r using unrelaxed congested link travel times and
relaxed congested link travel times. Above we plot �f (r) and �g(r). The �gure
on the left shows the result for the unrelaxed congested fastest paths, the �gure
on the right for relaxed congested fastest paths.

12 Similarity to geometrically shortest paths

If link speed variance is low in relaxed congested networks, one implication is
that during the peak period freeway links are not inherently more attractive
to motorists than arterials or local streets. Congestion reduces the distinction
between di�erent functional class link categories. One consequence is that a
fastest path computed on a relaxed congested network will resemble a straight-
line geometrically shortest path far more closely than it will resemble a fastest
path computed using uncongested link travel times. This e�ect was evident to
us when we visually inspected fastest paths in a congested network. We again
used the similarity measure �j(i) as de�ned above to quantify the similarity
of fastest paths in a congested network with fastest paths in the uncongested
network and geometrically shortest paths computed using link lengths rather
than link travel times.

We selected a large sample of O-D pairs such that for each O-D pair the
uncongested fastest path was very di�erent from the geometric shortest path.
We then computed the � similarity measure between the relaxed congested
network fastest path and the uncongested and geometric paths. The results are
shown in Figure 9. We see clearly that fastest paths in the relaxed congested
network resemble geometric shortest paths far more closely than they resemble
uncongested fastest paths.
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13 Discussion

With respect to the distinction between regimes, our results can be summarized
as follows:

� All methods except \similarity to fastest path as a function of extra travel
time" (Sec. 11) di�erentiate between congested and uncongested regimes.

� Only the speed statistics (Sec. 8) and \similarity to fastest path as a
function of extra travel time" (Sec. 11) di�erentiate between non-relaxed
and relaxed congestion.

Remember that we started out in the search of a measure of \equilibration"
of a tra�c system, and we assumed that, in the simulations, the system should
be more \equilibrated" after many iterations. For that reason, the second item
is more interesting. Yet, it only means that the methods enable an observer to
distinguish relaxation in the same system; without looking at di�erent systems
it is not possible to decide if any of the methods is capable to generate a em-
pirically \universal" number, i.e. a number which only depends on the actual
\relaxedness" and not on network characteristics.

For that reason and in general it is probably clear from our results that
more extensive calculations will be necessary to settle the problem. Our analysis
clearly shows that there is structure in the data; yet, to which extent the results
are robust is an open question. For example, it is unclear how much of the
\relaxed vs. unrelaxed" results depend on the fact that the unrelaxed situation
included grid-lock. Grid-lock in itself is not detrimental to our interpretation
since it is simply a sign of a strong \imbalance" (i.e. non-relaxedness); yet,
practical use of the results would be limited if most of the quantitative signal
would be generated by it.

Our �ndings also have some implications on the value of real-time congestion
information. Under conditions of very light congestion, a motorist's optimal
policy is to compute a fastest path using the posted speed limits of network
links. Real-time congestion information is of no value when there is very little
congestion; this is hardly surprising. But our results indicate that the same is
true under conditions of extremely heavy congestion: when a network is fully
congested (i.e. when all links are essentially slow-moving parking lots), the
optimal policy is to compute a shortest path simply using the lengths of network
links. This will also be a fastest path, because under extreme congestion the
speeds on links will be roughly equal regardless of the functional class of the
links. As in the case of very light congestion, a motorist's optimal strategy may
be able to safely ignore real-time congestion information. The value of real-time
information seems to be highest when the system operates near capacity; the
observation that the system is probably least predictable in that regime has
been made before [30].

Another implication may be that, regarding the initial plan set of the it-
eration process, it may make sense to have a certain amount of drivers chose
geometrically shortest paths during peak-period in order to speed up the relax-
ation process.
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14 Computational considerations

For computing the K-fastest path for one OD-pair in a time-independent net-
work, we used a two-phase process as described in [31] and analyzed by [32].
In the �rst phase, the complete Dijkstra tree is computed. For a sparse graph
(as we have) and using a heap implementation of the Dijkstra algorithm, this
has time-complexity O(Elog2N) where E is the number of edges and N the
number of nodes in the graph. This returns the fastest path. In the second
phase, the Dijkstra-tree is used to systematically generate the second-shortest,
third-shortest, etc. path. The computational complexity of this second phase
seems to be di�cult to �nd [32, 33].

In practice, we needed, for each given tra�c situation, approximately 8 hours
on a 250 MHz UltraSparc CPU in order to calculate the 500 fastest path between
955 OD-pairs in a network of 6124 links and 2292 nodes.

It would have been desirable to do these computations in a time-dependent
network. However, as stated above, we were unable to locate a polynomial
algorithm that calculates K-fastest path in a time-dependent network. We tested
a brute-force algorithm of exponential complexity, which �rst computed the
time-dependent fastest path, then started a series of time-dependent fastest
path calculations with one link of the original fastest path removed, etc. For
our problem, we were able to compute up to K = 5 in 2.5 hours per OD pair;
the 6th fastest path would, in the average, have needed several days to compute.

15 Summary

In iterated transportation simulations, the result of one iteration is fed into the
route planner which adapts some portion of the routes to the congestion en-
countered in the last iteration. This paper analyzes a series of such iterations
which started from a set of route plans where every driver assumed that the
network was empty. This starting con�guration clearly leads to too much tra�c
and thus heavy congestion on the freeways. We call this situation \unrelaxed
congested". After the iterative process, tra�c has moved from the freeways to
the arterials, and tra�c overall is much faster. We call this situation \relaxed
congested". This paper analyzes several measures to distinguish the two dif-
ferent regimes and also an \uncongested" regime for comparison. Link speed
variances are much higher in the \unrelaxed congested situation". The rela-
tion between fastest and K-fastest paths are similar in both congested regimes.
When looking at the similarity to the fastest path as a function of additional
travel time, unrelaxed congested alternative paths are much more similar to
the fastest path than relaxed congested alternative paths. Or in other words:
Under relaxed congested conditions, roughly equivalent solutions are in the aver-
age further apart. Last, we found that, under congestion, fastest path resemble
geometrically shortest paths.

In short: Between the criteria we tested, the most suitable to check for
relaxation were: (i) velocity distributions, and (ii) similarity to fastest path.
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